实验室新闻

    科研进展

    实验室公告

    学术活动公告

 
[CHEMOSPHERE],卷: 221 页: 683-692
 点击数:224次 添加时间:  [关闭] [收藏]

作者:Zhang, WY (Zhang, Wenying); Qian, LB (Qian, Linbo) ; Ouyang, D (Ouyang, Da) ; Chen, Y (Chen, Yun) ; Han, L (Han, Lu); Chen, MF (Chen, Mengfang) 

 

题目:Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization

 

刊物:CHEMOSPHERE,卷: 221  页: 683-692

DOI: 10.1016/j.chemosphere.2019.01.070

出版年: APR 2019

 

文章下载:点此下载

 

摘要:

The attapulgite supported nanoscale zero-valent iron composite (AT-nZVI) was synthesized and used for Cr(VI) removal. X-ray diffraction (XRD) and transmission electron microscope (TEM) indicated that nZVI particles were well distributed and immobilized on the attapulgite surface. Batch experiments of Cr(VI) removal were conducted at varying mass ratios, initial Cr(VI) concentrations and kinetics. The results indicated that the removal efficiency of Cr(VI) by AT-nZVI approaches 90.6%, being greater than that by non-supported nZVI (62.9%). The removal kinetics could be more accurately explained using pseudo second order kinetics model. The composite exhibited a synergistic interaction instead of simple mixture of AT and nZVI. Reduction was the dominant mechanism at low concentrations as opposed to adsorption at high concentrations. FeCr2O4 was the main reduction product by AT-nZVI, which was attributed to the reduction of Cr(VI) by nZVI and co-precipitation of Cr-Fe oxides on the surface of AT. In the meantime, Fe(II) ion contributed to 64% for the Cr(VI) removal, which resulted from the dissolution of nZVI during the removal process. From the analysis of XRD and XPS results, the crystallization of FeCr2O4 is believed to be formed easily after the reaction of the AT-nZVI composite with Cr(VI) which is more stable and greatly reduce the risk of secondary pollution compared with nZVI. The introduction of AT enhanced adsorption of Cr(VI) and crystallization of the products. The above results suggested that AT-nZVI could be a promising remediation material for Cr(VI)-contaminated groundwater. (C) 2019 Elsevier Ltd. All rights reserved.




 

 

版权所有:中国科学院南京土壤研究所 苏ICP备05004320号 地 址:江苏省南京市北京东路71号 邮编:210008 网站管理